Benha University
Faculty Of Engineering at Shoubra

U ECE 122
Electrical Circuits (2)(2017/2018)

Dr. Moataz Hsheribini
motaz.ali@feng.bu.edu.eg

Reference Chapter 16

> Schaum's Outline Of Theory And Problems Of Electric Circuits https://archive.org/details/TheoryAndProblemsOfElectricCircuits

$1^{\text {st }}$ Order R-C

DC

First-Order RC Transient Step-Response

- Assume the switch S is closed at $\mathrm{t}=0$
- Apply KVL to the series RC circuit shown:

$$
\frac{1}{C} \int i d t+R i=V
$$

- Differentiating both sides which gives:

$$
\frac{i}{C}+R \frac{d i}{d t}=0 \quad \text { or } \quad\left(D+\frac{1}{R C}\right) i=0
$$

- The solution to this homogeneous equation consists of only the complementary function since the particular solution is zero.
- To find the complementary Solution, solve the auxiliary equation:

$$
m+\frac{1}{R C}=0 \quad m=\frac{-1}{R C}=\frac{-1}{\tau}
$$

The complementary Solution is :
$i=A e^{m t}$

$$
i=A e^{\frac{-t}{\tau}}
$$

First-Order RC Transient Step-Response

- To determine the constant " A " we note that :
at $t=0$ is $R i_{0}=V$ or $i_{0}=V / R$.

$$
\text { Where } \operatorname{Vc}(0)=0
$$

- Now substituting the value of io into current equation
- We obtain $A=V / R$ at $t=0$.

$$
i=\frac{V}{R} e^{-t / R C}
$$

has the form of an exponential decay starting from the transient value to the final steady-state value of 0 ampere in 5 time-constants

5

First-Order RC Transient Step-Response

$>$ The voltage across the resistor is:

$$
v_{R}=R i=V e^{-t / R C}
$$

$>$ The voltage across the capacitor is:
$v_{c}=\frac{1}{C} \int i d t=V\left(1-e^{-t / R C}\right)$

Transient-response is almost finished after 5τ, then steady state

$1^{\text {st }}$ Order R-C

AC

7

Alternating Current Transients

RC Sinusoidal Transient

$$
\begin{gathered}
\left(D+\frac{1}{R C}\right) i=\frac{\omega V_{\max }}{R} \cos (\omega t+\phi) \\
i_{c}=c e^{-t / R C} \\
i+\frac{1}{C} \int i d t=V_{\max } \sin (\omega t+\phi) \\
i_{p}=\frac{V_{\max }}{\sqrt{R^{2}+(1 / \omega C)^{2}}} \sin \left(\omega t+\phi+\tan ^{-1} 1 / \omega C R\right) \\
i=c e^{-t / R C}+\frac{V_{\max }}{\sqrt{R^{2}+(1 / \omega C)^{2}}} \sin \left(\omega t+\phi+\tan ^{-1} 1 / \omega C R\right)
\end{gathered}
$$

Alternating Current Transients

RC Sinusoidal Transient

To determine the constant c, let $t=0$ then the initial current $i_{0}=\frac{V_{\max }}{R} \sin \phi$. Substituting this into (63) and setting $t=0$, we obtain

$$
\begin{gathered}
\frac{V_{\max }}{R} \sin \phi=c(1)+\frac{V_{\max }}{\sqrt{R^{2}+(1 / \omega C)^{2}}} \sin \left(\phi+\tan ^{-1} 1 / \omega C R\right) \\
c=\frac{V_{\max }}{R} \sin \phi-\frac{V_{\max }}{\sqrt{R^{2}+(1 / \omega C)^{2}}} \sin \left(\phi+\tan ^{-1} 1 / \omega C R\right)
\end{gathered}
$$

Substitution of c from (65) into (63) results in the complete current

$$
\begin{array}{r}
i=e^{-t / R C}\left[\frac{V_{\max }}{R} \sin \phi-\frac{V_{\max }}{\sqrt{R^{2}+(1 / \omega C)^{2}}} \sin \left(\phi+\tan ^{-1} 1 / \omega C R\right)\right] \\
+\frac{V_{\max }}{\sqrt{R^{2}+(1 / \omega C)^{2}}} \sin \left(\omega t+\phi+\tan ^{-1} 1 / \omega C R\right)
\end{array}
$$

Examples

10

Example (1)
A series $R C$ circuit with $R=5000$ ohms and $C=20 \mu$ has a constant voltage $V=100 v$ applied at $t=0$ and the capacitor has no initial charge. Find the equations of i, V_{R} and V_{c}.
s closed sol.

$$
100=5000 i+50000 \int i d t
$$

$$
\begin{aligned}
0 & =5000 \frac{d i}{d t}+50000 i \\
0 & =(5000 D+50000) i
\end{aligned}
$$

Example (1)

$$
(D+10) i=0
$$

it has only one solution (P.I) $\quad m+10=0$

$$
i=A e^{m t} A e^{-10 t}
$$

$$
m=-10
$$

at $t \equiv 0 \rightarrow$ Sub in $1 \therefore 100=5000 i$ or $i=100 / 500$.

$$
i=0.02 A
$$

on $i=0.02 e^{-10 t}, 1 t$

Example (2)
A series $R C$ circuit with $R=100$ ohms and $C=25 \mu f$ has a sinusoidal voltage source $v=$ $250 \sin (500 t+\varnothing)$ applied at a time when $\varnothing=0^{\circ}$. Find the current, assuming there is no initial charge on the capacitor.

$$
\begin{aligned}
& 100 i+\frac{1}{c} \int i d t=250 \sin 500 \% \\
& (D+400) i=1250 \cos (500 t) \\
& \text { Sol } i^{\prime}=C e^{400 t}+\frac{N_{\max }}{\sqrt{R^{2}+\left(\frac{1}{\omega t}\right)^{2}}} \sin \left(\omega t+\phi+\tan ^{-1}\left(\frac{1}{R \alpha}\right)\right) \\
& i=C \cdot e^{400 t}+1.955 \sin \left(500 t+38.7^{\circ}\right) \\
& \text { ot } t=0 \longrightarrow i=\frac{250}{100} \sin 0=2.5 \\
& \therefore 2.5=c e^{-400 x_{0}}+1.955 \sin (0+38.7) \\
& \therefore \quad C=-1,22 \\
& \text { oi } i=-1.22 e^{-400 t}+1.955 \sin \left(500 t+38.7^{\circ}\right)
\end{aligned}
$$

Example (3)
4 in $R C$ circitshown $v=2 \operatorname{sos} \sin (\operatorname{sou} t+\phi)$ at $\phi=45^{\circ} \rightarrow$ switch dosed, initial charye $q_{0}=5000 \times 10^{-6} \mathrm{Col}$. on cespecitur with shoun Polerity, Find I

$$
=c e^{-400 t}+1.955 \sin \left(500 t+83.7^{\circ}\right)
$$

at $t=0 \quad \dot{i}=\frac{\sin +V_{c}}{100}=\frac{(250 \sin 45)+\left(\theta_{0} / 5\right)^{2006}}{100}$

$$
\begin{aligned}
i & =(250 \sin 450+200) / 100=3.77 \\
\therefore 2 t t & =-\quad \rightarrow 3.77 \mathrm{~A} \\
3.77 & =c e^{0}+1.955 \sin \left(0+83.7^{\circ}\right) \\
& c=1.83 \\
\therefore \quad i & \left.=1.83 e^{-400 t}+1.955 \sin \left(5004+83.7^{\circ}\right)\right)
\end{aligned}
$$

Example (4)
In the two-mesh network shown in Fig. 4 the switch is closed at $t=0$. Find the transient mesh currents in and i2 shown in the diagram, and the transient capacitor voltage Vc.
loop 1

$$
\begin{aligned}
50 & =20 i_{1}-10 i_{2} \\
\therefore & 0=20 D i_{1}-10 D i_{2} \\
& \text { or } 2 D i_{1}=D i_{2}
\end{aligned}
$$

loop 2

$$
0=10 i_{2}-10 i_{1}+\frac{1}{c} \int i_{2} d t
$$

$$
0=100 i_{2}-100 i_{1}+\frac{1}{c} i_{2}^{-}
$$

$$
\text { or }-D i_{1}+i_{2}\left(D+\frac{1}{10 C}\right)=0
$$

$\left.-D i_{1}+i_{2}\left(D+5 \times 10^{4}\right) \mathrm{E}_{0}\right)^{2 \times 10^{6}} 2$

Example (4)

$$
\begin{aligned}
& \therefore-\frac{\Delta i_{2}}{2}+\left(\Delta t 5 \times 10^{4}\right) i_{2}=0 \\
& \partial r^{5}\left(D+10^{5}\right) i_{2}=0 \\
& \therefore \text { sol } \quad i_{2}=A e^{2 n t}=A e^{-k 0^{5} t}
\end{aligned}
$$

at $t=$. \rightarrow Frowey 2 $\therefore \quad a=10 i_{2}-10 T_{1}$,

$$
\begin{aligned}
& \therefore \text { at } t=i_{1}=i_{2}=5 \\
& i_{2}=5=A E \quad \therefore A=5 \\
& \text { of } \quad i_{2}=5 e^{-10^{2} t}
\end{aligned}
$$

$$
\begin{aligned}
& \left.01 i_{1}=\frac{5}{2}+\frac{5}{2} e^{-10^{5} t}\right] \rightarrow \begin{array}{c}
v_{6}=\frac{1}{2} f_{i} \delta t \\
i
\end{array} \\
& v_{c}=25\left(1-e^{15 s} t\right) 16
\end{aligned}
$$

Example (5)
In the RC circuit of Fig. 3 the switch is closed on position 1 at $\mathrm{t}=0$ and after 1 TC is moved to position 2 . Find the complete current transient.
at position 1

joan) $!~ D=500 \frac{d i}{-1 L}+\frac{1}{0.5 x} i$

$$
\begin{aligned}
& 0=500 D i+2000000 i \\
& 0=D i+4000 i \\
& \quad i=A e^{-4000 t_{1}} \quad i(D+4000)=0
\end{aligned}
$$

Example (5)
at $t=0 \quad \rightarrow \quad i=20 / 500=0.04=\mathrm{A}$

$$
\therefore l_{1}=0.04 e^{-4000 t}
$$

after $1 T C=1 R C=250 \mu \mathrm{sec}$

$$
i=0.04 \times e^{-400 \times 250 \mu}=0.0147 A
$$

Now switch moved to $?$

$$
\begin{aligned}
& -40 \stackrel{+k_{1}}{=} \text { Sol } 1+\frac{1}{c} \text { Silt } \\
& 0=500 d i / d t+\frac{1}{0.5 \times 1.06} 0^{i} \\
& f_{2}=B e^{-4000}\left(t-t_{1}\right)
\end{aligned}
$$

Example (5)

$$
\begin{aligned}
& 250 \times 10^{-6} \\
& \therefore U_{c}=20\left(1-\bar{e}^{4000 t}\right)=20\left(1-e^{-4000 \times(\hat{R C})}\right) \\
& =20\left(1-e^{-1}\right)=12.65 \text { Volt }
\end{aligned}
$$

$$
\begin{aligned}
& i=-\frac{40+12.65}{500}=-0.1053 \mathrm{~A} \\
& 0 i_{2}=-0.1053 e^{-4000\left(t-t_{1}\right)}
\end{aligned}
$$

Example (5)

